ตั้งค่าการอ่าน

ค่าเริ่มต้น

  • เลื่อนอัตโนมัติ
    หลุมดำ (Black Hole)

    ลำดับตอนที่ #3 : ประวัติการศึกษาหลุมดำ

    • อัปเดตล่าสุด 27 ส.ค. 54


    1อิงตามทฤษฎีของนิวตัน

    แนวความคิดเกี่ยวกับวัตถุที่มีมวลมากเสียจนแม้แต่แสงก็ไม่สามารถหนีออกมาได้เริ่มขึ้นจากนักธรณีวิทยาชื่อ จอห์น มิเชล ซึ่งได้เขียนจดหมายฉบับหนึ่งในปี ค.ศ. 1783 ส่งถึงเพื่อนชื่อ เฮนรี่ คาเวนดิช ในเวลาต่อมาแนวคิดนี้ได้รับการตีพิมพ์โดยรอยัลโซไซตี้

    สำหรับทรงกลมที่มีเส้นผ่านศูนย์กลางครึ่งหนึ่งของดวงอาทิตย์ แต่มีความหนาแน่นมากกว่าความหนาแน่นของดวงอาทิตย์ถึง 500 เท่า วัตถุที่ตกลงจากความสูงไม่จำกัดสู่ผิวทรงกลมนั้นจะมีความเร็วที่พื้นผิวทรงกลมสูงกว่าความเร็วแสง ผลที่ตามมาหากแสงถูกกระทำโดยแรงเดียวกันในสัดส่วนสัมพันธ์กับแรงเฉื่อยทิศทางตรงข้ามที่เกิดจากวัตถุอื่น แสงทั้งหมดที่แผ่ออกจากวัตถุนั้นจะถูกดึงกลับไปยังทรงกลมด้วยแรงโน้มถ่วงเฉพาะของตัวมันเอง

    ทฤษฎีนี้ถือว่าแสงได้รับอิทธิพลจากความโน้มถ่วงเช่นเดียวกันกับวัตถุอื่นที่มีมวล

    ในปี ค.ศ. 1796 นักคณิตศาสตร์ชื่อ ปีแยร์-ซีมง ลาปลาซ ได้เสนอแนวคิดเดียวกันนี้ในหนังสือของเขา Exposition du système du Monde ทั้งในฉบับพิมพ์ครั้งที่หนึ่งและสอง (แต่แนวคิดนี้ไม่ปรากฏในฉบับพิมพ์ครั้งหลังๆ) ในเวลาต่อมา แนวคิดของทั้งมิเชลและลาปลาซที่อิงอยู่บนหลักการของนิวตันมักถูกอ้างถึงว่าเป็น ดาวมืด เพื่อแยกมันออกจาก "หลุมดำ" ตามทฤษฎีสัมพัทธภาพทั่วไป

    แนวความคิดส่วนใหญ่เกี่ยวกับหลุมดำได้ถูกเพิกเฉยไปในคริสต์ศตวรรษที่ 19 หลังจากที่ยอมรับกันแล้วว่าแสงเป็นคลื่นที่ไม่มีมวล ดังนั้นจึงไม่ได้รับอิทธิพลจากความโน้มถ่วง ไม่เหมือนกับหลุมดำในปัจจุบันที่เชื่อว่าวัตถุด้านหลังขอบฟ้าจะยังคงที่อยู่แม้จะเกิดการยุบตัว

     

    2อิงตามทฤษฎีสัมพัทธภาพทั่วไป       

    ในปี ค.ศ. 1915 อัลเบิร์ต ไอน์สไตน์ ได้พัฒนาทฤษฎีเกี่ยวกับความโน้มถ่วงเรียกว่า ทฤษฎีสัมพัทธภาพทั่วไป ซึ่งแสดงให้เห็นดังกล่าวข้างต้นแล้วว่า แรงโน้มถ่วงมีผลกระทบกับแสง (แม้ว่าแสงจะมีมวลเป็นศูนย์ก็ตาม ทว่าจุดกำเนิดของสภาพโน้มถ่วงมิได้เกิดจากมวล แต่เกิดจากพลังงาน) หลังจากนั้นไม่กี่เดือน คาร์ล ชวาร์สชิลด์ ได้เสนอมาตราชวาร์สชิลด์สำหรับสนามโน้มถ่วงของมวลแบบจุดและมวลทรงกลม ที่แสดงว่าหลุมดำสามารถเกิดขึ้นได้ตามทฤษฎี ปัจจุบันรัศมีชวาร์สชิลด์เป็นที่รู้จักกันในฐานะรัศมีของขอบฟ้าเหตุการณ์ของหลุมดำที่ไม่หมุน แต่ในเวลานั้นผู้คนยังไม่เข้าใจกัน ตัวอย่างเช่นชวาร์สชิลด์เองก็ยังคิดว่ามันไม่อาจเป็นจริงในทางกายภาพ โจฮันเนส โดรสเต นักศึกษาของเฮนดริก ลอว์เรนซ์ ได้เสนอผลลัพธ์แบบเดียวกันสำหรับมวลแบบจุดหลังจากที่ชวาร์สชิลด์เสนอแนวคิดเป็นเวลาหลายเดือน ทั้งยังได้อธิบายคุณสมบัติบางประการเพิ่มเติมอีกด้วย

    ในปี ค.ศ. 1930 นักฟิสิกส์ดาราศาสตร์ชื่อ สุพราหมัณยัน จันทรสิกขา แย้งว่า ตามทฤษฎีสัมพัทธภาพพิเศษ วัตถุที่ไม่หมุนและมีมวลมากกว่าดวงอาทิตย์ 1.44 เท่า (คือค่าขอบเขตจันทรสิกขา) จะยุบตัวลงจนสิ้นสูญเพราะไม่มีอะไรเท่าที่รู้จักจะมาหยุดมันได้ ข้อโต้แย้งของเขาถูกโต้กลับโดยนายอาร์เทอร์ เอ็ดดิงตัน ผู้ซึ่งเชื่อว่ามีบางอย่างสามารถหยุดการยุบตัวได้ ความคิดของเอ็ดดิงตันก็มีส่วนถูก เพราะดาวแคระขาวที่มีมวลมากกว่าขอบเขตจันทรสิกขาจะยุบตัวลงกลายเป็นดาวนิวตรอน แต่ในปี ค.ศ. 1939 โรเบิร์ต ออพเพนไฮม์เมอร์ได้ตีพิมพ์บทความ (โดยมีผู้เขียนร่วมหลายคน) ที่ทำนายว่าดาวที่มีมวลมากกว่าดวงอาทิตย์ 3 เท่าขึ้นไป (คือค่าขอบเขตโทลแมน-ออพเพนไฮม์เมอร์-โวลคอฟฟ์) จะยุบตัวลงกลายเป็นหลุมดำ ด้วยเหตุผลเดียวกันกับที่จันทรสิกขาเคยนำเสนอ

    ออพเพนไฮม์เมอร์กับเพื่อนร่วมงานใช้ระบบอ้างอิงพิกัดของชวาร์สชิลด์ (ซึ่งเป็นระบบพิกัดอย่างเดียวที่มีให้ใช้ใน ค.ศ. 1939) ทำให้สร้างเอกภาวะทางคณิตศาสตร์ออกมาได้ที่รัศมีชวาร์สชิลด์ กล่าวอีกนัยหนึ่งสมการล่มลงไปที่ค่ารัศมีชวาร์สชิลด์เพราะค่าบางค่ากลายเป็นอนันต์ คำแปลนี้บ่งชี้ว่ารัศมีชวาร์สชิลด์เป็นค่าขอบเขตของ "ฟอง" ที่ซึ่งเวลา "หยุด" เป็นเวลาหลายปีทีเดียวที่ดาวยุบตัวเหล่านี้ถูกเรียกว่า "ดาวแช่แข็ง" เพราะการคำนวณแสดงว่าผู้สังเกตภายนอกจะเห็นพื้นผิวของดาวหยุดนิ่งที่เวลาซึ่งการยุบตัวเกิดขึ้นภายในรัศมีชวาร์สชิลด์ ทว่านักฟิสิกส์จำนวนมากยังไม่สามารถยอมรับแนวคิดเรื่องเวลาที่หยุดนิ่งภายในรัศมีชวาร์สชิลด์ ประเด็นนี้ยังเป็นที่สนใจอยู่บ้างเล็กน้อยตลอดเวลาที่ผ่านไป 20 ปี

    ติดตามเรื่องนี้
    เก็บเข้าคอลเล็กชัน

    ผู้อ่านนิยมอ่านต่อ ดูทั้งหมด

    loading
    กำลังโหลด...

    อีบุ๊ก ดูทั้งหมด

    loading
    กำลังโหลด...

    ความคิดเห็น

    ×