ตั้งค่าการอ่าน

ค่าเริ่มต้น

  • เลื่อนอัตโนมัติ
    บทความ , , น่าสนใจ ?

    ลำดับตอนที่ #2 : ทฤษฎีสัมพัทธภาพพิเศษ

    • อัปเดตล่าสุด 16 ก.ย. 53


    ทฤษฎีสัมพัทธภาพพิเศษ

    image

    ทฤษฎีสัมพัทธภาพพิเศษ (อังกฤษ: Special Relativity) (ไม่ใช่ทฤษฎีสัมพันธภาพพิเศษ) ถูกเสนอขึ้นในปี ค.ศ. 1905 โดยอัลเบิร์ต ไอน์สไตน์ ในบทความของเขา “เกี่ยวกับพลศาสตร์ไฟฟ้าของวัตถุซึ่งเคลื่อนที่ (On the Electrodynamics of Moving Bodies)” สามศตวรรษก่อนหน้านั้น หลักสัมพัทธภาพของกาลิเลโอกล่าวไว้ว่า การเคลื่อนที่ด้วยความเร็วคงที่ทั้งหมดเป็นการสัมพัทธ์ และไม่มีสถานะของการหยุดนิ่งสัมบูรณ์และนิยามได้

    คนที่อยู่บนดาดฟ้าเรือคิดว่าตนอยู่นิ่ง แต่คนที่สังเกตบนชายฝั่งกลับบอกว่า ชายบนเรือกำลังเคลื่อนที่ ทฤษฏีของไอน์สไตน์รวมหลักสัมพัทธภาพของกาลิเลโอเข้ากับสมมติฐานที่ว่า ผู้สังเกตทุกคนจะวัดอัตราเร็วของแสงได้เท่ากัน เสมอ ไม่ว่าสภาวะการเคลื่อนที่ เชิงเส้นด้วยความเร็วคงที่ของพวกเขาจะเป็นอย่างไร

    ทฤษฏีนี้มีข้อสรุปอันน่าประหลาดใจหลายอย่างซึ่งขัดกับสามัญสำนึก แต่สามารถพิสูจน์ได้ด้วยการทดลอง ทฤษฏีสัมพัทธภาพพิเศษล้มล้างแนวคิดของสเปซสัมบูรณ์และเวลาสัมบูรณ์ของนิวตัน โดยการยืนยันว่า ระยะทางและเวลาขึ้นอยู่กับผู้สังเกต และเวลากับสเปซนั้นถูกรับรู้ต่างกันไปขึ้นอยู่กับผู้สังเกต มันนำมาซึ่งหลักการสมมูลของสสารและพลังงาน ซึ่งสามารถแสดงเป็นสมการชื่อดัง E=mc2 เมื่อ c คืออัตราเร็วของแสง ทฤษฎีสัมพัทธภาพพิเศษสอดคล้องกับกลศาสตร์นิวตันในสำนึก ทั่วไปและในการทดลองเมื่อความเร็วของสิ่งต่าง ๆ น้อยมากเมื่อเทียบกับอัตราเร็วแสง

    ทฤษฎีนี้เรียกว่า “พิเศษ” เนื่องจากมันประยุกต์หลักสัมพัทธภาพกับกรอบอ้างอิงเฉื่อยเท่านั้น ไอน์สไตน์พัฒนาทฤษฎีสัมพัทธภาพทั่วไปโดยประยุกต์หลัก สัมพัทธภาพให้ใช้ทั่วไป กล่าวคือ ใช้ได้กับทุกกรอบอ้างอิง และทฤษฎีดังกล่าวยังรวมผลของความโน้มถ่วง ทฤษฎีสัมพัทธภาพพิเศษไม่ได้รวมผลของความโน้มถ่วง แต่มันสามารถจัดการกับความเร่งได้

    ถึงแม้ว่าทฤษฎีสัมพัทธภาพจะทำให้เกิดการสัมพัทธ์กันของปริมาณบางอย่าง เช่น เวลาซึ่งเรามักคิดว่าเป็นปริมาณสัมบูรณ์เนื่องจากประสบการณ์ในชีวิตประจำวัน ถึงกระนั้นมันก็มีปริมาณบางอย่างที่เป็นปริมาณสัมบูรณ์ทั้ง ๆ ที่เราคิดว่ามันน่าจะเป็นปริมาณสัมพัทธ์ กล่าวให้ชัดคือว่า อัตราเร็วของแสงจะเท่ากันสำหรับทุกผู้สังเกต แม้ว่าพวกเขาจะเคลื่อนที่สัมพัทธ์กันก็ตาม ทฤษฎีสัมพัทธภาพแสดงให้เห็นว่า c ไม่ใช่แค่ความเร็วของปรากฏการณ์ที่เรียกว่า — แสง — เท่านั้น แต่ยังเป็นค่าพื้นฐานที่เชื่อมสเปซกับเวลาเข้าด้วยกัน กล่าวโดยเจาะจงคือว่า ทฤษฎีสัมพัทธภาพยืนยันว่าไม่มีวัตถุใดเคลื่อนที่เร็วเท่ากับแสงได้

    สมมติฐาน

    บทความหลัก: สมมติฐาน ของทฤษฎีสัมพัทธภาพพิเศษ(Einstein Postulate)

       1. สมมติฐานข้อแรก – หลักสัมพัทธภาพอย่างพิเศษ – กฎทางฟิสิกส์ย่อมเหมือนกันในทุกกรอบอ้างอิงเฉื่อย กล่าวอีกนัยหนึ่งคือ ไม่มีกรอบอ้างอิงพิเศษใด ๆ
       2. สมมติฐานข้อที่สอง – ความไม่แปรเปลี่ยนของ c – อัตราเร็วของแสงในสุญญากาศเป็นค่าคงที่สากล (c) ซึ่งไม่ขึ้นอยู่กับการเคลื่อนที่ของแหล่งกำเนิดแสงนั้น

    พลังของทฤษฎีไอน์สไตน์เกิดขึ้นจากวิธีที่เขาได้มาซึ่งผลลัพธ์อันน่าตื่น ตระหนกและดูจะไม่น่าถูกต้องจากข้อสมมุติง่าย ๆ สองอย่างซึ่งค้นพบจากการสังเกต ผู้สังเกตพยายามวัดอัตราเร็วของแสงที่แผ่ออกมา พบว่าได้คำตอบเท่าเดิมไม่ว่าผู้สังเกตหรือองค์ประกอบของระบบวัดจะเคลื่อนที่ อย่างไร
    ความ บกพร่องของกรอบอ้างอิงสัมบูรณ์

    หลักสัมพัทธภาพ ซึ่งกล่าวว่าไม่มีกรอบอ้างอิงที่อยู่กับที่ นั้นสืบเนื่องมาจากกาลิเลโอ และถูกรวมเข้ากันฟิสิกส์ของนิวตัน อย่างไรก็ตาม ในช่วงปลายศตวรรษที่ 19 การมีอยู่ของคลื่นแม่เหล็กไฟฟ้าทำให้นักฟิสิกส์เสนอแนวคิดว่า เอกภพเต็มไปด้วยสารที่รู้จักในนาม “อีเทอร์” ซึ่งทำตัวเป็นตัวกลางยามที่การสั่นของคลื่นเคลื่อนไป อีเทอร์ถูกตั้งขึ้นเพื่อการมีกรอบอ้างอิงสัมบูรณ์ต้านกับหลักที่ว่าอัตรา เร็วของกรอบอ้างอิงใด ๆ สามารถวัดได้ กล่าวอีกอย่างคือ อีเทอร์เป็นสิ่งเดียวที่ถูกตรึงหรือไม่เคลื่อนที่ในเอกภพ อีเทอร์ถูกสมมุติให้มีคุณสมบัติอันอัศจรรย์: มันยืดหยุ่นพอที่จะรองรับคลื่นแม่เหล็กไฟฟ้า และคลื่นนั้นต้องสามารถมีการกระทำกับสสาร ในขณะที่ตัวอีเทอร์เองต้องไม่มีความต้านทานในการเคลื่อนที่สำหรับวัตถุที่ ทะลุผ่านมันไป ผลการทดลองต่าง ๆ รวมทั้งการ ทดลองของไมเคิลสันและเมอร์เลย์ ชี้ให้เห็นว่าโลก ‘อยู่กับที่’ — ซึ่งเป็นอะไรที่ยากจะอธิบายได้ เพราะโลกอยู่ในวงโคจรรอบดวงอาทิตย์ ผลลัพธ์อันสละสลวยของไอน์สไตน์ล้มล้างแนวคิดเรื่องอีเทอร์และการอยู่นิ่ง สัมบูรณ์ ทฤษฎีสัมพัทธภาพพิเศษถูกเขียนขึ้นไม่ใช่แค่ถือว่ากรอบอ้างอิงเฉพาะใด ๆ นั้นพิเศษ แต่ว่าในสัมพัทธภาพ กรอบหนึ่ง ๆ ต้องสังเกตพบกฎทางฟิสิกส์แบบเดียวกันโดยไม่ขึ้นอยู่กับความเร็วของผู้สังเกต กล่าวให้ชัดคือ อัตราเร็วของแสงในสุญญากาศต้องวัดได้ c เสมอ แม้ว่าจะวัดโดยระบบต่าง ๆ ซึ่งเคลื่อนที่ด้วยความเร็วต่าง ๆ (แต่คงที่)
    ผลสรุป

    บทความหลัก: ผลสรุป ของทฤษฎีสัมพัทธภาพพิเศษ

    ไอน์สไตน์ได้กล่าวไว้ว่าผลที่ตามมาของทฤษฎีสัมพัทธภาพพิเศษสามารถหาได้ จากการพิจารณาการแปลงแบบลอเรนซ์ การแปลงเหล่านี้ รวมทั้งทฤษฏีสัมพัทธภาพพิเศษ นำไปสู่การทำนายลักษณะกายภาพที่ต่างไปจากกลศาสตร์นิวตันเมื่อความเร็ว สัมพัทธ์มีค่าเทียบเคียงอัตราเร็วแสง อัตราเร็วแสงนั้นมากกว่าทุกสิ่งที่มนุษย์เคยประสบ จนทำให้ผลบางอย่างซึ่งทำนายจากหลักการสัมพัทธ์นั้นจะขัดกับสัญชาตญาณตั้งแต่ แรก:

        * การยืดออกของเวลา – เวลาที่ล่วงไประหว่างเหตุการณ์สองอย่างนั้นไม่แปรเปลี่ยนจากผู้สังเกตหนึ่ง ไปยังผู้สังเกตหนึ่ง แต่มันขึ้นอยู่กับความเร็วสัมพัทธ์ของกรอบอ้างอิงของผู้สังเกต (ตัวอย่างเช่น ปัญหา twin paradox ซึ่งพูดถึงฝาแฝดซึ่งคนหนึ่งบินไปกับยานอวกาศซึ่งเคลื่อนที่ไปด้วยความเร็ว ใกล้แสง แล้วกลับมาพบว่าแฝดของเขาที่อยู่บนโลกมีอายุมากกว่า)

        * สัมพัทธภาพ ของความพร้อมกัน – เหตุการณ์สองอย่างเกิดขึ้นในที่ที่ต่างกันสองแห่งอย่างพร้อมกันสำหรับผู้ สังเกตหนึ่ง อาจไม่พร้อมกันสำหรับผู้สังเกตคนอื่น (ความบกพร่องของความพร้อมกันสัมบูรณ์)

        * การหดสั้นเชิง ลอเรนซ์ – มิติ (เช่น ความยาว) ของวัตถุเมื่อวัดโดยผู้สังเกตคนหนึ่งอาจเล็กลงกว่าผลการวัดของผู้สังเกตอีก คนหนึ่ง (ตัวอย่างเช่น ladder paradox เกี่ยวข้องกับบันไดยาวซึ่งเคลื่อนที่ด้วยอัตราเร็วใกล้แสงและเข้าเก็บในห้อง ซึ่งเล็กกว่า)

        * การรวมความเร็ว – ความเร็ว (และอัตราเร็ว) ไม่ได้ ‘รวม’ กันง่าย ๆ ยกตัวอย่างเข่นถ้าจรวดลำหนึ่งกำลังเคลื่อนที่ด้วยอัตราเร็ว ⅔ ของอัตราเร็วแสงสัมพัทธ์กับผู้สังเกตคนหนึ่ง แล้วจรวดก็ปล่อยมิซไซล์ที่มีอัตราเร็วเท่ากับ ⅔ ของอัตราเร็วแสงสัมพัทธ์กับจรวด มิซไซล์ไม่ได้มีอัตราเร็วมากกว่าอัตราเร็วแสงสัมพัทธ์กับผู้สังเกต (ในตัวอย่างนี้ ผู้สังเกตจะเห็นมิซไซล์วิ่งไปด้วยอัตราเร็ว 12/13 ของอัตราเร็วแสง)

        * ความเฉื่อยกับโมเมนตัม – เมื่อความเร็วของวัตถุเข้าใกล้อัตราเร็วแสง วัตถุจะเร่งได้ยากขึ้นและยากขึ้นเรื่อย ๆ

        * การสมมูลของมวลและพลังงาน, E=mc2 – มวลและพลังงานสามารถแปลงกลับกันไปมา และมีบทบาทเทียบเท่ากัน (ตัวอย่างเช่น แรงโน้มถ่วงของแอปเปิลที่กำลังหล่น ส่วนหนึ่งเกิดจากพลังงานจลน์ของอนุภาคย่อยซึ่งประกอบเป็นแอปเปิลขึ้นมา)

    กรอบ อ้างอิง ระบบพิกัด และการแปลงแบบลอเรนซ์

    ทฤษฎีสัมพัทธภาพขึ้นอยู่กับ “กรอบอ้างอิง” กรอบอ้างอิงคือจุดในสเปซที่อยู่นิ่ง หรือเคลื่อนที่ด้วยความเร็วคงที่ จากตำแหน่งซึ่งสามารถวัดได้ตามแกน 3 แกน นอกจากนี้ กรอบอ้างอิงยังมีนาฬิกาซึ่งกำลังเคลื่อนที่ไปกับกรอบอ้างอิงซึ่งใช้ในการวัด เวลาของเหตุการณ์

    เหตุการณ์ คือสิ่งที่เกิดขึ้นโดยสามารถระบุเป็นเวลาและตำแหน่งเดี่ยว ๆ ในสเปซสัมพัทธ์กับกรอบอ้างอิง: นั่นคือ “จุด” ในสเปซ-เวลา เนื่องจากอัตราเร็วแสงมีค่าคงที่ในแต่ละกรอบอ้างอิงและทุก ๆ กรอบ พัลส์ของแสงจึงสามารถใช้วัดระยะทางได้อย่างแม่นยำและกลับมาเมื่อครั้งที่ เหตุการณ์เกิดขึ้นไปยังนาฬิกา ถึงแม้ว่าแสงจะใช้เวลากลับมาหานาฬิกาหลังจากที่เหตุการณ์ได้เกิดขึ้นแล้วก็ ตาม

    ยกตัวอย่างเช่น การระเบิดของประทัดสามารถเป็น “เหตุการณ์” ได้ เราสามารถระบุเหตุการณ์ได้อย่างสมบูรณ์ด้วยใช้พิกัด สเปซ-เวลา 4 มิติ: เวลาที่เหตุการณ์เกิดขึ้น และตำแหน่ง 3 มิติจากตำแหน่งอ้างอิง เรียกกรอบอ้างอิงนี้ว่า S

    ในทฤษฎีสัมพัทธภาพ เรามักต้องการคำนวณตำแหน่งของจุดจากตำแหน่งอ้างอิงอีกอันหนึ่ง

    สมมุติเรามีกรอบอ้างอิงที่สอง คือ S’ ซึ่งมีแกนพิกัดและนาฬิกาวางตัวทับกันกับระบบของ S ที่เวลาเป็นศูนย์ แต่กรอบอ้างอิงที่สองกำลังเคลื่อนที่ด้วยความเร็วคงที่ v\, เทียบกับกรอบอ้างอิง S ไปตามแกน x\,

    เนื่องจากไม่มีกรอบอ้างอิงสัมบูรณ์ในทฤษฎีสัมพัทธภาพ แนวคิดเรื่อง ‘การเคลื่อนที่’ จึงไม่ได้มีอยู่อย่างชัดเจน จากที่ทุกสิ่งย่อมเคลื่อนที่เทียบกับกรอบอ้างอิงอื่นเสมอ แทนที่โดย กรอบสองกรอบใด ๆ ที่เคลื่อนที่ด้วยอัตราเร็วเท่ากัน ในทิศทางเดียวกันจะเรียกว่า การเคลื่อนที่ร่วม ดังนั้น S และ S’ จึงไม่ได้เป็นการเคลื่อนที่ร่วมกัน

    กำหนดให้ เหตุการณ์ เกิดขึ้นในพิกัดสเปซ-เวลา (t, x, y, z) \, ในระบบ S และในพิกัด (t', x', y', z') \, ในระบบ S’ จากนั้นการแปลงแบบลอเรนซ์ระบุว่าพิกัดทั้งสองสัมพันธ์กันดังนี้:

    t' = \gamma \left(t - \frac{v x}{c^{2}}  \right)
    x' = \gamma (x - v t) \,
    y' = y\,
    z' = z\,

    เมื่อ \gamma \equiv \frac{1}{\sqrt{1 -  v^2/c^2}} เรียกว่า Lorentz factor และ c คือ อัตราเร็วแสง ในสุญญากาศ

    พิกัด y\, และ z\, ไม่ได้รับผล แต่แกน x\, และ t\, นั้นผสานกันในสูตรการแปลง โดยการแปลงนี้สามารถเข้าใจได้ด้วย การหมุนแบบไฮเพอร์โบลิก

    ปริมาณซึ่งไม่แปรเปลี่ยนภายใต้การแปลงแบบลอเรนซ์รู้จักกันในนาม Lorentz scalar

    ความ พร้อมกัน

    จากสมการที่หนึ่งของการแปลงแบบลอเรนซ์ในเทอมผลต่างของพิกัด จะได้

    \Delta t' = \gamma \left(\Delta t - \frac{v  \Delta x}{c^{2}} \right)

    เห็นได้ชัดว่าเหตุการณ์สองอย่างที่พร้อมกันในกรอบอ้างอิง S (คือ \Delta t = 0\,) นั้นไม่จำเป็นต้องเกิดขึ้นพร้อมกันในอีกกรอบอ้างอิงหนึ่ง คือ กรอบอ้างอิง S’ (คือ \Delta t' = 0\,). จนกว่าเหตุการณ์เหล่าจะเกิดขึ้นที่เดิมในกรอบอ้างอิง S (คือ \Delta x = 0\,) เหตุการณ์ถึงจะพร้อมกันในอีกกรอบอ้างอิง คือ กรอบอ้างอิง S’

    การ ยืดออกของเวลา และการหดสั้นของความยาว

    จากการเขียนการแปลงแบบลอเรนซ์และอินเวอร์สในเทอมผลต่างของพิกัด เราจะได้

    \Delta t' = \gamma \left(\Delta t - \frac{v  \Delta x}{c^{2}} \right)
    \Delta x' = \gamma (\Delta x - v \Delta t) \,

    และ

    \Delta t = \gamma \left(\Delta t' + \frac{v  \Delta x'}{c^{2}} \right)
    \Delta x = \gamma (\Delta x' + v \Delta t')  \,

    สมมุติว่าเรามีนาฬิกาซึ่งอยู่นิ่งในกรอบอ้างอิง S เสียงติ๊กของนาฬิกาถัดกันวัดโดยที่ Δx = 0 ถ้าเราต้องการรู้ความสัมพัทธ์ระหว่างเวลาระหว่างเสียงติ๊ก ซึ่งวัดโดยระบบอ้างอิงทังสอง เราสามารถใช้สมการแรกและพบว่า

    \Delta t' = \gamma \Delta t \,

    นี่แสดงให้เห็นว่า ช่วงเวลา Δt‘ ระหว่างเสียงนาฬิกาสองติ๊กที่วัดในกรอบอ้างอิงซึ่ง ‘เคลื่อนที่’ S’ นั้นโตกว่าช่วงเวลาΔt ระหว่างเสียงนาฬิกาสองติ๊กที่วัดในกรอบอ้างอิงในกรอบที่หยุดนิ่งเทียบกับ นาฬิกานั้น ปรากฏการณ์ดังกล่าวเรียกว่า การยืดออกของเวลา. (ข้อสังเกต: การวัดเวลาระหว่างสองเหตุการณ์ใด ๆ จะต้องวัดที่ตำแหน่งในสเปซเดิมเสมอเทียบกับกรอบอ้างอิงนั้น ๆ คือ Δx = 0 ในกรอบอ้างอิง S หรือ Δx‘ = 0 ในกรอบอ้างอิง S’ :ผู้แปล)

    เช่นเดียวกัน สมมุติเรามีไม้วัดวางนิ่งอยู่ในกรอบอ้างอิง S ในระบบนี้ ความยาวของไม้สามารถเขียนเป็น Δx ถ้าเราต้องการหาความยาวของไม้นี้โดยวัดในกรอบอ้างอิงซึ่ง ‘เคลื่อนที่’ S’ เราต้องมั่นใจว่าวัดระยะ x‘ ที่ตำแหน่งปลายไม้อย่างพร้อมกันในกรอบอ้างอิง S’ หรือพูดอีกอย่างก็คือ การวัดต้องให้ Δt‘ = 0ซึ่งเราสามารถ รวมหลักการนี้เข้ากับสมการที่สี่เพื่อหาความสัมพันธ์ระหว่างความยาว Δx กับ Δx‘ ได้เป็น:

    \Delta x' = \frac{\Delta x}{\gamma}

    นี่แสดงว่าความยาว Δx‘ ของไม้ซึ่งวัดในกรอบอ้างอิงซึ่ง ‘เคลื่อนที่’ S’ สั้นกว่าความยาว Δx ในกรอบที่อยู่นิ่งเทียบกับตัวไม้เอง ปรากฏการณ์นี้เรียกว่า การหดสั้นของความ ยาว หรือ การหดสั้นแบบ ลอเรนซ์ (ข้อสังเกต: การวัดความยาวระหว่างสองตำแหน่งในสเปซจะต้องวัดที่เวลาเดียวกันเสมอเทียบกับ กรอบอ้างอิงนั้น ๆ คือ Δt = 0 ในกรอบอ้างอิง S หรือ Δt‘ = 0 ในกรอบอ้างอิง S’ :ผู้แปล)

    ผลการยืดหดเหล่านี้ไม่ใช่เพียงภาพปรากฏเท่านั้น แต่มันสัมพันธ์อย่างชัดเจนกับวิธีในการวัดช่วงเวลาระหว่างเหตุการณ์ ‘ร่วมตำแหน่ง’ และระยะทางระหว่างเหตุการณ์ที่เกิดขึ้นอย่างพร้อมกัน

    Casuality และการห้ามวัตถุเคลื่อนที่เร็วกว่าแสง

    Diagram 2. light cone

    ในแผนภาพที่ 2 ช่วง AB เรียกว่า ‘time-like’ กล่าวคือ มีกรอบอ้างอิงซึ่งมีเหตุการณ์ A และเหตุการณ์ B เกิดขึ้นในตำแหน่งเดียวกันในสเปซ แต่แยกกันเนื่องจากการเกิดขึ้นในเวลาที่ต่างกันเท่านั้น ถ้า A เกิดก่อน B ในกรอบอ้างอิงนั้น A ย่อมเกิดขึ้นก่อน B ในทุก ๆ กรอบอ้างอิง จึงเป็นไปได้ในเชิงสมมติฐานว่า สสาร (หรือข้อมูล) จะสามารถเคลื่อนที่จาก A ไป B และมีความสัมพันธ์อย่างมีเหตุผล (โดย A เป็นเหตุ และ B เป็นผล)

    ช่วง AC ในแผนภาพเรียกว่า ‘space-like’; กล่าวคือ มีกรอบอ้างอิงซึ่งเหตุการณ์ A และเหตุการณ์ C เกิดขึ้นพร้อมกัน เว้นแต่ว่าอยู่คนละตำแหน่งในสเปซ อย่างไรก็ตามยังมีบางกรอบซึ่ง A เกิดก่อน C (ดังรูป) และบางกรอบซึ่ง C เกิดก่อน A ถ้าความสัมพันธ์แบบเหตุและผลนั้นเป็นไปได้ระหว่างเหตุการณ์ A และ C พาราดอกซ์ทางตรรกะ (logical paradoxes) จะเกิดขึ้น ตัวอย่างเช่น ถ้า A เป็นเหตุ และ C เป็นผล ก็จะมีบางกรอบอ้างอิงที่ทำให้ผลมาก่อนเหตุ วิธีหนึ่งที่จะมองคือว่า ถ้ามีเทคโนโลยีที่ยอมให้มีการเคลื่อนที่เร็วกว่าแสง มันก็จะทำตัวเป็นไทม์แมชชีน (time machine) ดังนั้นผลสรุปอย่างหนึ่งของทฤษฎีสสสัมพัทธภาพพิเศษคือว่า (โดยถือว่า causality เป็นหลักการทางตรรกะอย่างหนึ่ง) ไม่มีข้อมูลหรือวัตถุใดสามารถเคลื่อนที่ได้เร็วกว่าแสง อย่างไรก็ตาม สถานการณ์ทางตรรกะไม่ชัดเจนนักในกรณีของทฤษฏีสัมพัทธภาพทั่วไป ดังนั้นจึงเป็นคำถามปลายเปิดว่ามี fundamental principle ซึ่งรักษาหลัก causality (และรักษาหลักการเคลื่อนที่เร็วกว่าแสง) ในทฤษฎีสัมพัทธภาพทั่วไปหรือไม่

    การ รวมความเร็ว

    ถ้าผู้สังเกตในกรอบอ้างอิง S เห็นวัตถุหนึ่งเคลื่อนที่ไปตามแนวแกน x ด้วยความเร็ว w ผู้สังเกตในกรอบ S‘ จะเห็นว่าวัตถุดังกล่าวมีความเร็ว w‘ โดยที่

    w'=\frac{w-v}{1-wv/c^2}.

    สมการนี้สามารถหาได้จากการแปลงสเปซและเวลาข้างต้น ระลึกไว้ว่าถ้าวัตถุเคลื่อนที่ด้วยอัตราเร็วแสงในกรอบอ้างอิง S (นั่นคือ w = c) วัตถุนั้นก็จะเคลื่อนที่ด้วยอัตราเร็วแสงในกรอบอ้างอิง S‘ เช่นกัน ถ้าทั้ง w และ v เล็กมากเมื่อเทียบกับอัตราเร็วแสง เราก็จะสามารถใช้การแปลงความเร็วแบบกาลิเลียนในแบบสัญชาตญาณของเรา คือ w‘ = wv.

    มวล โมเมนตัม และพลังงาน

    นอกจากการปรับเปลี่ยนแนวคิดเกี่ยวกับสเปซและเวลาแล้ว ทฤษฎีสัมพัทธภาพยังบังคับให้เราต้องกลับมาพิจารณาแนวคิดของ มวล โมเมนตัม และ พลังงาน ทั้งหมดนี้มีความสำคัญต่อโครงสร้างใน กลศาสตร์นิวตัน ทฤษฎีสัมพัทธภาพแสดงให้เห็นว่า อันที่จริงแล้ว แนวคิดเหล่านั้นมีแง่มุมที่ต่างกันมากสำหรับปริมาณทางกายภาพเดียวกันเหมือน กับที่มันแสดงว่าสเปซกับเวลามีความเชื่อมโยงกัน

    มีหลายวิธี (ที่เทียบเท่ากัน) ที่จะนิยามโมเมนตัมและพลังงานใน SR (หมายถึง ทฤษฎีสัมพัทธภาพพิเศษ :ผู้แปล) วิธีหนึ่งคือใช้ กฎการอนุรักษ์ ถ้ากฎเหล่านี้ยังคงใช้ได้ใน SR พวกมันย่อมเป็นจริงในทุกกรอบอ้างอิงที่เป็นไปได้ อย่างไรก็ตาม ถ้าเราทำ การทดลองในความคิด อย่างง่ายโดยใช้การนิยามแบบนิวตันของโมเมนตัมและพลังงาน เราจะเห็นว่าปริมาณเหล่านั้นไม่อนุรักษ์ใน SR เราสามารถกู้แนวคิดของการอนุรักษ์กลับมาโดยทำการปรับนิยามเพื่อให้เข้ากับ ความเร็วเชิงสัมพัทธภาพ และนี่คือนิยามใหม่ซึ่งแก้ไขแล้วสำหรับโมเมนตัมและพลังงานใน SR

    ให้วัตถุมี มวลไม่แปรเปลี่ยน m0 เคลื่อนที่ด้วยความเร็ว v พลังงานและโมเมตัมจะเป็น (และถูกสั่งให้เป็น)

    E = \gamma m_0 c^2 \,\!
    \vec p = \gamma m_0 \vec v \,\!

    เมื่อ γ ( Lorentz factor) มาจาก

    \gamma = \frac{1}{\sqrt{1 - v^2/c^2}} \,\!

    และ c คืออัตราเร็วแสง เทอม γ ปรากฏอยู่บ่อย ๆ ในทฤษฏีสัมพัทธภาพ และมันมาจาก สมการการแปลง แบบลอเรนซ์.

    พลังงานและโมเมนตัมเชิงสัมพัทธภาพมีความสัมพันธ์กันตามสูตร

     E^2 - (p c) ^2 = (m_0 c^2) ^2 \,\!

    ซึ่งเรียกว่าเป็น สมการพลังงาน-โมเมนตัมเชิงสัมพัทธภาพ (relativistic energy-momentum equation)

    สำหรับความเร็วที่น้อยกว่าของแสงมาก ค่า γ สามารถประมาณได้โดยใช้ Taylor series expansion และจะพบว่า

     E \approx m_0 c^2 + \begin{matrix}  \frac{1}{2} \end{matrix} m_0 v^2 \,\!
    \vec p \approx m_0 \vec v \,\!

    ถ้าไม่มีเทอมแรกในสูตรพลังงาน (จะกล่าวถึงภายหลัง) สูตรเหล่านี้จะสอดคล้องอย่างชัดเจนกับนิยามมาตรฐานของ พลังงานจลน์ และโมเมนตัมแบบนิวตัน นี่เป็นการแสดงว่าทฤษฏีสัมพัทธภาพพิเศษต้องสอดคล้องกับกลศาสตร์นิวตันที่ ความเร็วต่ำ

    เมื่อดูที่สูตรสำหรับพลังงานข้างต้น เราจะเห็นว่าวัตถุ เมื่ออยู่นิ่ง (v = 0 and γ = 1) จะมีพลังงานที่ไม่เท่ากับศูนย์เหลืออยู่ คือ

    E = m_0 c^2 \,\!

    พลังงานนี้เรียกว่า พลังงานนิ่ง (rest energy) พลังงานนิ่งไม่ได้เป็นสาเหตุของความขัดแย้งกับทฤษฎีแบบนิวตันเพราะว่ามัน เป็นค่าคงที่ และเป็นความแตกต่างในแง่พลังงานซึ่งมีความหมายอย่างยิ่ง ตราบเท่าที่ยังพิจารณาพลังงานจลน์

    เมื่อนำสูตรนี้พิจารณาค่า เราจะพบว่าในทฤษฎีสัมพัทธภาพ มวลเป็นเพียง แค่พลังงานรูปแบบหนึ่ง ในปี ค.ศ. 1927 ไอน์สไตน์ได้ตั้งข้อสังเกตเกี่ยวกับทฤษฎีสัมพัทธภาพพิเศษไว้ว่า

    ภายใต้ทฤษฎีนี้ มวลนั้นไม่ใช่ปริมาณใหม่อะไร แต่เป็นเพียงปริมาณที่ขึ้นอยู่กับ (และจริง ๆ แล้ว คือ เหมือนกับ) พลังงาน

    สูตรนี้มีความสำคัญเมื่อมีคนวัดมวลนิวคลิไอของอะตอมต่าง ๆ และโดยการดูผลต่างของมวลเหล่านั้น ก็สามารถทำนายได้ว่านิวคลีไอใดมีพลังงานที่เก็บไว้จนสามารถเกิด ปฏิกิริยานิวเคลียร์ ได้ รวมทั้งข้อมูลซึ่งมีประโยชน์อย่างยิ่งในการพัฒนา ระเบิดนิวเคลียร์ ผลกระทบของสมการนี้ต่อผู้คนใน ศตวรรษที่ 20 ทำให้มันเป็นหนึ่งในสมการที่มีชื่อเสียงที่สุดในสาขาวิทยาศาสตร์ทั้งหมด

    มวล เชิงสัมพัทธภาพ

    ในวิชาฟิสิกส์เบื้องต้นและหนังสือเก่า ๆ เกี่ยวกับทฤษฎีสัมพัทธภาพบางครั้งจะนิยามคำว่า มวลเชิงสัมพัทธภาพ ซึ่งเพิ่มขึ้นเมื่อความเร็วของวัตถุเพิ่มขึ้น ตามการตีความทางเรขาคณิตของทฤษฎีสัมพัทธภาพพิเศษ มักจะไม่ชอบนิยามนี้ และคำว่า ‘มวล’ ถูกสงวนไว้สำหรับว่าคำว่า ‘มวลนิ่ง’ และไม่ขึ้นอยู่กับกรอบอ้างอิง กล่าวคือ มัน ไม่แปรเปลี่ยน

    จากการใช้นิยามของมวลเชิงสัมพัทธภาพ มวลวัตถุสามารถแปรเปลี่ยนได้ขึ้นอยู่กับกรอบอ้างอิงเฉื่อยของผู้สังเกตเช่น เดียวกับปริมาณอื่น ๆ เช่น ความยาว การนิยามปริมาณหนึ่ง ๆ บางครั้งมี ประโยชน์ ในการช่วยให้คำนวณง่ายขึ้นโดยจำกัดมันกับกรอบอ้างอิง ยกตัวอย่างเช่น ในการพิจารณาวัตถุซึ่งมีมวลไม่แปรเปลี่ยน m0 ซึ่งเคลื่อนที่ด้วยความเร็วค่าหนึ่งสัมพัทธ์กับกรอบอ้างอิงของผู้สังเกตคน หนึ่ง ผู้สังเกตคนนั้นจะนิยาม มวลเชิงสัมพัทธภาพ ของวัตถุเท่ากับ

    m = \gamma m_0\!

    “มวลเชิงสัมพัทธภาพ” ไม่ควรสับสนกับนิยามของ “longitudinal” และ “transverse mass” ที่ถูกใช้ในช่วงปี ค.ศ. 1900 และที่ตั้งอยู่บนการประยุกต์ที่ขัดแย้งกันของกฎนิวตัน คือใช้ F=ma สำหรับมวลแปรค่าได้ ในขณะที่มวลเชิงสัมพัทธภาพสัมพันธ์กับมวลเชิงไดนามิกของนิวตัน โดยที่ p=mv และ F=dp/dt.

    ควรระลึกไว้เช่นกันว่า วัตถุ ไม่ ได้มีมวลมากขึ้นในกรอบอ้างอิง แท้และ กรอบอ้างอิงเฉื่อยอื่นๆ (คือ กรอบอ้างอิงที่เห็นวัตถุหยุดนิ่ง :ผู้แปล,หรือกรอบที่เห็นวัตถุเคลื่อนที่ ด้วยความเร็วคงที่) เพราะมวลเชิงสัมพัทธภาพจะแตกต่างกันไปสำหรับผู้สังเกตในกรอบต่าง ๆ กัน(แท้จริงแล้วคือ Lorentz factor มีค่าต่างๆกัน) มวลที่อิสระจากกรอบ เท่า นั้น จึงจะเป็นมวลไม่แปรเปลี่ยน (มวลชิงสัมภัทธภาพ เปลี่ยนไปตามกรอบอ้างอิง แต่ไม่มีความจำเป็นที่จะนิยาม มวลเชิงสัมพัทธภาพขึ้นมาเลย)เมื่อใช้มวลเชิงสัมพัทธภาพ กรอบอ้างอิงที่ใช้ต้องระบุให้ชัดเจนหากมันไม่ชัดเจนหรือแสดงออกมา มันเป็นไปโดยไม่ได้กล่าวว่า การเพิ่มขึ้นในมวลเชิงสัมพัทธภาพไม่ได้มาจากจำนวนอะตอมที่เพิ่มขึ้นในวัตถุ แต่แทนที่จะเป็นอย่างนั้น มวลเชิงสัมพัทธภาพของแต่ละอะตอมและอนุภาคเล็กกว่าอะตอมก็ไม่เพิ่มขึ้น แต่พลังงานในการเคลื่อนที่เพิ่มขึ้น และเราตีความว่ามวลคือพลังงานนั่นเองแท้จริงแล้วธรรมชาติของมวลและพลังงาน ต่างกันมาก

    หนังสือเรียนฟิสิกส์เก่าๆบางครั้งจะใช้มวลเชิงสัมพัทธภาพเพราะมันยอมให้ นักเรียนได้ใช้ความรู้ของฟิสิกส์แบบนิวตันเพื่อจะได้เข้าใจในทฤษฏีสัมพัทธ ภาพในกรอบอ้างอิงของตัวเลือก (ซึ่งมักจะเป็นของตัวเอง!) “มวลเชิงสัมพัทธภาพ” ยังสอดคล้องกับแนวคิดของ “การยืดออกของเวลา” และ “การหดสั้นของระยะทาง”

    แรง

    นิยามแบบคลาสสิคของแรง F กำหนดโดย กฎข้อที่สองของนิวตัน ในรูปแบบดั้งเดิม

    \vec F = d\vec p/dt

    และใช้ได้ในทฤษฎีสัมพัทธภาพ

    หนังสือเรียนสมัยใหม่ มักจะเขียนกฎข้อที่สองของนิวตันใหม่เป็น

    \vec F = m \vec a

    รูปแบบนี้ใช้ไม่ได้ในทฤษฎีสัมพัทธภาพและกรณีอื่นใดที่มวล m แปรเปลี่ยน

    สำหรับมวลคงที่ m0 สูตรดังกล่าวสามารถเขียนแทนได้ ในกรณ๊สัมพัทธภาพ จะเป็น

    \vec F = \gamma m_0 \vec a + \gamma^3 m_0  \frac{\vec v \cdot \vec a}{c^2} \vec v

    จากการมองสมการนี้ จะพบว่าแรงและเวกเตอร์ความเร่งไม่เป็นจำเป็นต้องขนานกันในทฤษฎีสัมพัทธภาพ

    เรขาคณิต ของสเปซ-เวลา

    ทฤษฎีสัมพัทธภาพพิเศษใช้อวกาศมิงคอฟสกีสี่ มิติแบบราบ ซึ่งเป็นตัวอย่างหนึ่งของ สเปซ-เวลา อย่างไรก็ตาม สเปซแบบนี้คล้ายกับสเปซแบบยูคลิดสามมิติมาตรฐานอย่างมาก และโชคดีคือว่าด้วยเหตุนั้น มันง่ายมากที่จัดการกับมัน

    ผลต่างเชิง อนุพันธ์ของระยะทาง(ds) ในสเปซสามมิติแบบคาร์ทีเซียน นิยามโดย

     ds^2 = dx_1^2 + dx_2^2 + dx_3^2

    เมื่อ (dx1,dx2,dx3) เป็นผลต่างเชิงอนุพันธ์ของมิติตามแกนทั้งสาม ในเรขาคณิตของทฤษฎีสัมพัทธภาพ มิติที่สี่ คือ เวลา ได้ถูกเพิ่มเข้าไป พร้อมกับหน่วยของ c นั่นทำให้สมการสำหรับดิฟเฟอเรนเชียลของระยะทาง กลายเป็น

     ds^2 = dx_1^2 + dx_2^2 + dx_3^2 - c^2 dt^2

    ถ้าเราอยากทำให้พิกัดของเวลาดูเหมือนพิกัดของสเปซ เราสามารถทำให้เวลาเป็นจำนวนจินตภาพ: x4 = ict . ในกรณีนี้ สมการข้างต้นจะสมมาตร

     ds^2 = dx_1^2 + dx_2^2 + dx_3^2 + dx_4^2

    นี่แสดงให้เห็นมุมมองทางทฤษฎีที่ลึกซึ้งเมื่อมันแสดงว่าทฤษฎีสัมพัทธภาพ เป็นการ สมมาตรเชิงหมุน ของ สเปซ-เวลา ซึ่งคล้ายกับสมมาตรเชิงหมุนของ สเปซแบบยูคลิด อย่างมาก หากเป็นสเปซแบบยูคลิดจะใช้ Euclidean metric ดังนั้นสเปซ-เวลาจะใช้ Minkowski metric ตาม Misner (1971 §2.3) แล้ว ความเข้าใจในเชิงลึกทั้งหมดของทั้งทฤษฎีสัมพัทธภาพพิเศษและทั่วไปจะมาจากการ ศึกษา Minkowski metric (จะบรรยายในภายหลัง) มากกว่า Euclidean metric “ปลอม” ที่ใช้ ict เป็นพิกัดเวลา

    ถ้าเราลดแกนของสเปซลงเป็น 2 จนทำให้เราสามารถใช้ฟิสิกส์ในสเปซ 3 มิติ

     ds^2 = dx_1^2 + dx_2^2 - c^2 dt^2

    เราจะเห็นว่า null geodesics จะวางตัวตามกรวยคู่

    Sr1.jpg

    ซึ่งนิยามโดยสมการ

     ds^2 = 0 = dx_1^2 + dx_2^2 - c^2 dt^2

    หรือ

     dx_1^2 + dx_2^2 = c^2 dt^2

    ซึ่งเป็นสมการของวงกลมซึ่ง r=c*dt. ถ้าเราขยายผลนี้เป็นสเปซสามมิติ null geodesics จะเป็นกรวย 4 มิติ

    Sr3.jpg

     ds^2 = 0 = dx_1^2 + dx_2^2 + dx_3^2 - c^2  dt^2
     dx_1^2 + dx_2^2 + dx_3^2 = c^2 dt^2

    null dual-cone นี้แทน “แนวการมองเห็น” ของจุดในสเปซ กล่าวคือ เมื่อเรามองไปที่ดวงดาวและกล่าวว่า “แสงจากดาวที่ฉันรับได้มีอายุ X ปี” หมายความว่าเรากำลังมองลงไปตามแนวการมองเห็นนี้ คือ null geodesic เรากำลังมองเหตุการณ์หนึ่งที่ห่างออกไป d =  \sqrt{x_1^2+x_2^2+x_3^2} เมตร และ d/c วินาทีในอดีต ด้วยเหตุผลดังกล่าว null dual cone จึงรู้จักกันในนาม ‘กรวยแสง’ (จุดในมุมซ้ายล่างของภาพแทนดวงดาว จุดกำเนิดแทนตัวผู้สังเกต และเส้นเชื่อมนั้นแทน null geodesic “แนวการมองเห็น”)

    Sr1.jpg

    กรวยในเขต -t เป็นข้อมูลที่จุดนั้นกำลัง ‘รับ’ ในขณะที่กรวยในเขต +t เป็นข้อมูลที่จุดนั้นกำลัง ‘ส่ง’

    เรขาคณิตของอวกาศมิงคอฟสกี สามารถพรรณนาได้โดยใช้ Minkowski diagrams ซึ่งมีประโยชน์เช่นกันในความเข้าใจการทดลองทางความคิดต่าง ๆ ในทฤษฎีสัมพัทธภาพพิเศษ

    ฟิสิกส์ ในสเปซ-เวลา

    บัดนี้ เราจะได้เห็นวิธีการเขียนสมการของทฤษฎีสัมพัทธภาพพิเศษในรูปแบบที่ไม่แปร เปลี่ยนอย่างชัดเจน ตำแหน่งของเหตุการณ์หนึ่ง ๆ ในสเปซ-เวลา สามารถกำหนดโดย contravariant four vector ซึ่งมีองค์ประกอบ คือ

    x^\nu=\left(t, x, y, z\right)

    หมายความว่า x0 = t และ x1 = x และ x2 = y และ x3 = z. ตัวยกเป็นดัชนีของ contravariant indices ในส่วนนี้มากกว่าจะเป็นเลขชี้กำลังเว้นเสียแต่ว่าเมื่อมันหมายถึงยกกำลังสอง ส่วนตัวห้อยเป็น covariant indices ซึ่งเรียงจากศูนย์ไปถึงสามเมื่อใช้กับ spacetime gradient ของสนาม φ:

    \partial_0 \phi = \frac{\partial  \phi}{\partial t}, \quad \partial_1 \phi = \frac{\partial \phi}{\partial  x}, \quad \partial_2 \phi = \frac{\partial \phi}{\partial y}, \quad  \partial_3 \phi = \frac{\partial \phi}{\partial z}.
    เมตริกซ์ และการแปลงพิกัด

    จากการระลึถึงธรรมชาติสี่มิติของสเปซ-เวลา เราถูกชักจูงให้สร้าง Minkowski metric, η, กำหนดให้มีองค์ประกอบ (ใช้ได้ใน กรอบอ้างอิงเฉื่อย ใด ๆ) คือ

    \eta_{\alpha\beta} = \begin{pmatrix} -c^2 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}

    และส่วนกลับของมันคือ

    \eta^{\alpha\beta} = \begin{pmatrix} -1/c^2 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}

    ภายใต้เงื่อนไข

    ηαβηαβ = I

    จากนั้น เราระลึกได้ว่าการแปลงพิกัดระหว่างกรอบอ้างอิงเฉื่อยนั้นกำหนดโดย Lorentz transformation tensor Λ. สำหรับกรณีพิเศษของการเคลื่อนที่ตามแนวแกน x เราจะได้

    \begin{pmatrix}t'\\ x'\\ y'\\ z'\end{pmatrix}=  \begin{pmatrix} \gamma & -\beta\gamma/c & 0 & 0\\ -\beta\gamma c & \gamma & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}\begin{pmatrix}t\\ x\\ y\\ z\end{pmatrix}

    หรือ

    \Lambda^{\mu'}{}_\nu = \begin{pmatrix} \gamma & -\beta\gamma/c & 0 & 0\\ -\beta\gamma c & \gamma & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}

    ซึ่งก็คือ matrix of a boost (เช่นการหมุน) ระหว่างพิกัด x กับ t เมื่อ μ’ บอกแถว และ ν บอกคอลัมน์ ค่า β และ γ ยังนิยามเป็น

    \beta = \frac{v}{c},\ \gamma =  \frac{1}{\sqrt{1-\beta^2}}.

    เพื่อให้ทั่วไปยิ่งขึ้น การแปลงจากกรอบอ้างอิงหนึ่ง (ซึ่งไม่สนการแปลงเพื่อความเรียบง่าย) ไปยังอีกกรอบ ต้องทำให้

    \eta_{\alpha\beta} = \eta_{\mu'\nu'}  \Lambda^{\mu'}{}_\alpha \Lambda^{\nu'}{}_\beta \!

    เมื่อมี implied summation ของ \mu' \! และ \nu' \! จาก 0 ถึง 3 บนหลักมือขวาซึ่งสอดคล้องกับ Einstein summation convention Poincaré group เป็นกลุ่มที่ทั่วไปที่สุดของการแปลงซึ่งยังคงรักษาi Minkowski metric ไว้ และนี่เป็นสมมาตรทางกายภาพภายใต้ทฤษฎีสัมพัทธภาพอีกด้วย

    ปริมาณทางกายภาพแท้ทั้งหมดกำหนดโดยเทนเซอร์ ดังนั้นเพื่อการแปลงกรอบหนึ่งไปยังอีกกรอบหนึ่ง เราใช้จะกฎที่รู้จักกันดีในชื่อ tensor transformation law

    T^{\left[i_1',i_2',...i_p'\right]}_{\left[j_1',j_2',...j_q'\right]}  =  \Lambda^{i_1'}{}_{i_1}\Lambda^{i_2'}{}_{i_2}...\Lambda^{i_p'}{}_{i_p} \Lambda_{j_1'}{}^{j_1}\Lambda_{j_2'}{}^{j_2}...\Lambda_{j_q'}{}^{j_q} T^{\left[i_1,i_2,...i_p\right]}_{\left[j_1,j_2,...j_q\right]}

    เมื่อ \Lambda_{j_k'}{}^{j_k} \! เป็นเมตริกซ์ส่วนกลับของ \Lambda^{j_k'}{}_{j_k}  \!.

    เพื่อให้เห็นว่ามันมีประโยชน์อย่างไร เราจะแปลงตำแหน่งของเหตุการณ์หนึ่งจากระบบพิกัดไม่มีเครื่องหมายไพรม์ S ไปยังระบบมีไพรม์ S’ เราคำนวณได้ว่า

    \begin{pmatrix} t'\\ x'\\ y'\\ z' \end{pmatrix} = x^{\mu'}=\Lambda^{\mu'}{}_\nu x^\nu= \begin{pmatrix} \gamma & -\beta\gamma/c & 0 & 0\\ -\beta\gamma c & \gamma & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} t\\ x\\ y\\ z \end{pmatrix} = \begin{pmatrix} \gamma t- \gamma\beta x/c\\ \gamma x - \beta \gamma ct \\ y\\ z \end{pmatrix}

    ซึ่งการแปลงแบบลอเรนซ์ให้ผลเหมือนกัน เทนเซอร์ทุกตัวแปลงด้วยกฎเดียวกัน

    ความยาวกำลังสองของดิฟเฟอเรนเชียลของ position four-vector dx^\mu \! ซึ่งหาได้โดย

    \mathbf{dx}^2 = \eta_{\mu\nu}dx^\mu dx^\nu =  -(c \cdot dt) ^2+(dx) ^2+(dy) ^2+(dz) ^2\,

    เป็นปริมาณไม่แปรเปลี่ยน การไม่แปรเปลี่ยนหมายความว่ามันให้ค่าเดิมเสมอในทุกกรอบอ้างอิงเฉื่อย เพราะมันเป็นสเกลาร์ (0 rank tensor) และดังนั้นจึงไม่มี Λ ปรากฏในการแปลงเล็ก ๆ น้อย ๆ ระลึกไว้ว่าเมื่อ line element \mathbf{dx}^2 เป็นลบ d\tau=\sqrt{-\mathbf{dx}^2} / cจะ เป็นดิฟเฟอเรนเชียลของ proper time ในขณะที่ เมื่อ \mathbf{dx}^2 เป็นบวก \sqrt{\mathbf{dx}^2} จะเป็นดิฟเฟอเรนเชียลของ proper distance

    ค่าพื้นฐานของการจัดรูปสมการทางฟิสิกส์ในรูปของเทนเซอร์ คือสิ่งที่ไม่แปรเปลี่ยนภายใต้the Poincaré group อย่างชัดเจน จนทำให้เราไม่จำเป็นต้องทำการคำนวณเพิ่มเติมที่น่าเบื่อหน่ายเพื่อตรวจสอบ ความจริงนี้ เช่นเดียวกับการสร้างสมการ เรามักพบว่าสมการที่ตอนแรกดูจะไม่เกี่ยวข้องกันนั้น อันที่จริงแล้ว มันมีความสัมพันธ์อย่างใกล้ชิดในการเป็นส่วนหนึ่งของสมการเทนเซอร์เดียวกัน

    ความ เร็วและความเร่งใน 4 มิติ

    การเขียนปริมาณทางกายภาพอื่น ๆ เป็นเทนเซอร์สามารถนำมาซึ่งกฏการแปลงได้เรียบง่ายขึ้นเช่นกัน อย่างแรก ระลึกไว้ว่า velocity four-vector Uμ กำหนดโดย

    U^\mu = \frac{dx^\mu}{d\tau} = \begin{pmatrix}  \gamma \\ \gamma v_x \\ \gamma v_y \\ \gamma v_z \end{pmatrix}

    จากการเขียนเช่นนี้ เราสามารถกลับมามองกฏการรวมความเร็วในรูปแบบอย่างง่ายเกี่ยวกับการแปลง velocity four-vector ของอนุภาคจากกรอบอ้างอิงหนึ่งไปยังอีกกรอบหนึ่ง Uμ จึงมีรูปแบบไม่แปรเปลี่ยน คือ

    {\mathbf U}^2 = \eta_{\nu\mu} U^\nu U^\mu =  -c^2 .

    ดังนั้น velocity four-vector ทุกตัวจึงมีขนาดเท่ากับ c นี่เป็นสิ่งที่บอกความจริงว่าไม่มีวัตถุใดอยู่นิ่งในสัมพัทธภาพ อย่างน้อยที่สุด คุณก็ต้องเคลื่อนที่ไปในเวลา acceleration 4-vector กำหนดโดย A^\mu = d{\mathbf U^\mu}/d\tau. เมื่อได้ดังนั้น ทำการ differentiate สมการข้างต้นด้วย τ จะได้

    2\eta_{\mu\nu}A^\mu U^\nu = 0. \!

    ดังนั้นในทฤษฎีสัมพัทธภาพ acceleration four-vector กับ velocity 4-vector ตั้งฉากกัน

    โมเมนตัมใน 4 มิติ

    โมเมนตัมและพลังงานรวมอยู่ใน covariant 4-vector:

    p_\nu = m \cdot \eta_{\nu\mu} U^\mu =   \begin{pmatrix} -E \\ p_x\\ p_y\\ p_z\end{pmatrix}.

    เมื่อ m คือ มวลไม่แปรเปลี่ยน.

    ปริมาณไม่แปรเปลี่ยน (invarient) ของ momentum 4-vector คือ:

    \mathbf{p}^2 = \eta^{\mu\nu}p_\mu p_\nu =  -(E/c) ^2 + p^2 .

    เราสามารถทำออกมาได้ว่า ค่าไม่แปรเปลี่ยนนี้ เนื่องจากมันเป็นสเกลาร์ จึงไม่เกี่ยวข้องกับว่าเราใช้กรอบอ้างอิงไหนในการคำนวณ หลังจากนั้นโดยการแปลงกรอบที่ทำให้โมเมนคัมรวมเป็นศูนย์

    \mathbf{p}^2 = - (E_{rest}/c) ^2 = - (m \cdot  c) ^2 .

    เราจะพบว่า พลังงานนิ่งเป็นค่าไม่แปรเปลี่ยนซึ่งไม่ขึ้นอยู่กับกรอบอ้างอิง พลังงานนิ่งสามารถคำนวณได้แม้ในระบบที่อนุภาคและระบบกำลังเคลื่อนที่ เพียงแปลงกรอบไปยังกรอบที่ทำให้โมเมนตัมเป็นศูนย์เท่านั้น

    พลังงานนิ่งสัมพันธ์กับมวลตามสมการอันน่ายินดีที่เราได้พูดถึงไปแล้ว

    E_{rest} = m c^2\,

    ระลึกไว้ว่า มวลของระบบวัดในกรอบศูนย์กลางของโมเมนตัม (center of momentum frame) (เมื่อโมเมนตัมลัพธ์เป็นศูนย์) นั้นกำหนดโดยพลังงานรวมของระบบในกรอบอ้างอิงนั้น มันไม่ได้เท่ากับผลรวมของมวลแต่ละก้อนที่วัดในกรอบอ้างอิงอื่น

    แรง ใน 4 มิติ

    เมื่อใช้ กฎข้อที่สามของ นิวตัน แรงทั้งสองต้องนิยามจากอัตราการเปลี่ยนแปลงของโมเมนตัมซึ่งใช้พิกัดเวลา เดียวกัน กล่าวคือ เราต้องใช้แรงใน 3 มิติในการนิยามข้างต้น โชคร้ายที่ไม่มีเทนเซอร์ใน 4 มิติใดที่บรรจุองค์ประกอบของเวกเตอร์แรง 3 มิติตามองค์ประกอบต่าง ๆ ของมัน

    ถ้าวัตถุไม่ได้เคลื่อนที่ด้วยอัตราเร็ว c เราสามารถแปลงแรงใน 3 มิติจากกรอบอ้างอิงที่เคลื่อนที่ร่วมไปกับวัตถุไปยังกรอบอ้างอิงของผู้ สังเกตได้ นั่นนำมาซึ่ง 4-vector ซึ่งเรียกว่า four-force มันคืออัตราการเปลี่ยนแปลงของ four-vector พลังงาน-โมเมนตัม เทียบกับ proper time รูป covariant version ของ four force คือ

    F_\nu = \frac{d p_{\nu}}{d \tau} =   \begin{pmatrix} -{d E}/{d \tau} \\ {d p_x}/{d \tau} \\ {d p_y}/{d \tau}  \\ {d p_z}/{d \tau} \end{pmatrix}

    เมื่อ \tau \, คือ proper time

    ในกรอบนิ่งของวัตถุ องค์ประกอบเวลาของ four force จะเป็นศูนย์จนกว่า “มวลไม่แปรเปลี่ยน” ของวัตถุนั้นจะเปลี่ยนแปลง โดยที่ มันจะเท่ากับค่าลบของอัตราการเปลี่ยนแปลงคูณ c2 อย่างไรก็ตาม โดยทั่วไปแล้วองค์ประกอบของ four force ไม่ได้เท่ากับองค์ประกอบของแรงสามมิติ เพราะว่าแรงในสามมิตินิยามโดยอัตราการเปลี่ยนแปลงโมเมนตัมเทียบกับเวลาของ พิกดันั้น กล่าวคือ \frac{d p}{d t} ในขณะที่ four force นิยามโดยอัตราการเปลี่ยนแปลงโมเมนตัมเทียบกับ proper time นั่นคือ  \frac{d p} {d \tau} .

    ใน continuous medium density of force3 มิติรวมกับ density of power เพื่อสร้าง covariant 4-vector องค์ประกอบเชิงสเปซมาจากผลการหารแรงที่กระทำต่อเซลล์เล็กจิ๋ว (ใน 3 มิติ) โดยปริมาตรของเซลล์นั้น ส่วนองค์ประกอบเชิงเวลามาจากค่าลบของกำลังที่ส่งผ่านไปยังเซลล์หารด้วย ปริมาตรของเซลล์นั้น เวกเตอร์นี้จะนำไปใช้ในเรื่องแม่เหล็กไฟฟ้าด้านล่างต่อไป

    สัมพัทธภาพกับการรวมสนามแม่เหล็กไฟฟ้า

    การแปลงแบบลอเรนซ์ของ สนามไฟฟ้า ของประจุซึ่งเคลื่อนที่ไปในกรอบอ้างอิงของผู้สังเกตซึ่งไม่ได้เคลื่อนที่ ให้ผลการปรากฏของเทอมทางคณิตศาสตร์ที่รู้จักกันทั่วไปในนาม สนามแม่เหล็ก ในทางกลับกัน สนาม แม่เหล็กที่ เกิดขึ้นจากประจุซึ่งเคลื่อนที่จะหายไปและกลายเป็นสนาม ไฟฟ้าสถิต ทั้งหมดในกรอบอ้างอิงที่เคลื่อนที่ไปกับประจุ สมการของ เแมกซ์เวลล์ จึงเข้ากันอย่างเห็นไห้ชัดกับผลเชิงสัมพัทธภาพพิเศษในแบบจำลองคลาสสิคของ เอกภพ เมื่อสนามไฟฟ้าและสนามแม่เหล็กขึ้นอยู่กับกรอบอ้างอิงและสัมพันธ์กัน จึงเรียกว่าสนาม แม่เหล็กไฟฟ้า ทั้งนี้ทฤษฎีสัมพัทธภาพพิเศษได้ให้กฎการแปลงสำหรับวิธีที่สนามแม่เหล็กไฟฟ้า ในกรอบอ้างอิงเฉื่อยหนึ่งไปยังอีกกรอบอ้างอิงเฉื่อยอีกอันหนึ่ง

    ทฤษฎี แม่เหล็กไฟฟ้าใน 4 มิติ

    สมการของแมกซ์เวลล์ ในรูปแบบสามมิตินั้นสอดคล้องกับเนื้อความเชิงกายภาพของทฤษฎีสัมพัทธภาพพิเศษ อยู่แล้ว แต่เราต้องเขียนมันใหม่เพื่อทำให้มันมีความไม่เแปรเปลี่ยนอย่างชัดเจน

    ความหนาแน่นประจุ \rho \! และความหนาแน่นกระแส [J_x,J_y,J_z] \! สามารถรวมกันใน current-charge 4-vector:

    J^\mu = \begin{pmatrix} \rho \\ J_x\\ J_y\\ J_z\end{pmatrix}

    กฎ การอนุรักษ์ประจุ จึงกลายเป็น

    \partial_\mu J^\mu = 0. \!

    สนามไฟฟ้า [E_x,E_y,E_z] \! และ magnetic induction [B_x,B_y,B_z] \! รวมกันใน (rank 2 antisymmetric covariant) electromagnetic field tensor

      F_{\mu\nu} =   \begin{pmatrix}    0     & -E_x & -E_y & -E_z \\    E_x & 0      & B_z   & -B_y    \\    E_y & -B_z    & 0      & B_x   \\    E_z & B_y   & -B_x    & 0          \end{pmatrix}

    ความหนาแน่นของ แรงลอเรนซ์ f_\mu \! กระทำต่อวัตถุโดยสนามแม่เหล็กไฟฟ้าจะกลายเป็น

    f_\mu = F_{\mu\nu}J^\nu .\!

    กฎการ เหนี่ยวนำของฟาราเดย์ และ กฎของเกาส์ สำหรับสนามแม่เหล็กรวมกันในรูป

    \partial_\lambda F_{\mu\nu}+ \partial _\mu  F_{\nu \lambda}+   \partial_\nu F_{\lambda \mu} = 0. \!

    ถึงแม้ว่าจะมีสมการปรากฏขึ้นถึง 64 สมการในที่นี้ จริง ๆ แล้วมันจะลดลงเหลือเพียงสี่สมการที่ไม่ขึ้นจากกัน โดยการใช้ antisymmetry ของสนามแม่เหล็กไฟฟ้า เราสามารถลดรูปเหลือ identity (0=0) หรือไม่ก็ลบสามารถทั้งหมดออกไปยกเว้นสมาการที่มี λ,μ,ν = 1,2,3 หรือ 2,3,0 หรือ 3,0,1 หรือ 0,1,2.

    electric displacement [D_x,D_y,D_z] \! และ magnetic field [H_x,H_y,H_z] \! รวมกันเป็น (rank 2 antisymmetric contravariant) electromagnetic displacement tensor

      \mathcal{D}^{\mu\nu} =   \begin{pmatrix}    0     & D_x & D_y & D_z \\    -D_x & 0      & H_z   & -H_y    \\    -D_y & -H_z    & 0      & H_x   \\    -D_z & H_y   & -H_x    & 0          \end{pmatrix}

    กฎของแอมแปร์ และ กฎของเกาส์ รวมกันในรูป

    \partial_\nu \mathcal{D}^{\mu \nu} = J^{\mu}.  \!

    ในสุญญากาศ constitutive equations คือ

    \mu_0 \mathcal{D}^{\mu\nu} = \eta^{\mu\alpha}  \eta^{\nu\beta} F_{\alpha\beta}.

    Antisymmetry ลดสมการทั้ง 16 สมการนี้เหลือเพียงหกสมการที่ไม่ขึ้นจากกัน

    ความหนา แน่นพลังงาน ของสนามแม่เหล็กไฟฟ้ารวมกันกับ with Poynting vector และ Maxwell stress tensor เพื่อสร้างเป็น stress-energy tensor 4 มิติ มันคือ (ความหนาแน่น) ฟลักซ์ของ momentum 4-vector ในรูป rank 2 mixed tensor มันสามารถเขียนเป็น

    T_\alpha^\pi = F_{\alpha\beta}  \mathcal{D}^{\pi\beta} - \frac{1}{4} \delta_\alpha^\pi F_{\mu\nu}  \mathcal{D}^{\mu\nu}

    เมื่อ \delta_\alpha^\pi คือ Kronecker delta เมื่อดัชนีตัวบนต่ำกว่า η มันจะสมมาตรและเป็นส่วนหนึ่งของแหล่งกำเนิดสนามโน้มถ่วง

    การอนุรักษ์โมเมนตัมเชิงเส้นและพลังงานโดยสนามแม่เหล็กไฟฟ้าสามารถเขียน เป็น

    f_\mu + \partial_\nu T_\mu^\nu = 0\!

    เมื่อ f_\mu \! คือความหนาแน่นของ แรงลอเรนซ์ สมการนี้สามารถสรุปได้จากสมการข้างต้นที่ผ่านมา (กับความพยายามอย่างสำคัญ)

    ติดตามเรื่องนี้
    เก็บเข้าคอลเล็กชัน

    ผู้อ่านนิยมอ่านต่อ ดูทั้งหมด

    loading
    กำลังโหลด...

    อีบุ๊ก ดูทั้งหมด

    loading
    กำลังโหลด...

    ความคิดเห็น

    ×