คืนค่าการตั้งค่าทั้งหมด
คุณแน่ใจว่าต้องการคืนค่าการตั้งค่าทั้งหมด ?
ลำดับตอนที่ #4 : >>::เกร็ดความรู้::
โดย สุทัศน์ ยกส้าน ภาคีสมาชิก ราชบัณฑิตยสถาน | ||
ตั้งแต่สมัยโบราณมนุษย์ได้มีความต้องการจะนับและวัดขนาดของสรรพสิ่งต่างๆ ที่อยู่รายรอบตัว ดังนั้นจึงได้คิดวิธีนับจำนวนขึ้นมา เช่น นำหินมาวางเป็นกองๆ หรือใช้นิ้วนับ และวิธีนี้นี่เองที่ทำให้เรารู้จักระบบเลขฐานสิบ สืบเนื่องจากการที่เรามีนิ้ว 10 นิ้ว การขุดพบอักษรลิ่ม (cuneiform) ของชาว Sumerian ในดินแดน Mesopotamia ที่ตั้งอยู่ระหว่างแม่น้ำ Tigris กับ Euphrates ได้แสดงให้เห็นว่า ชาว Sumerian รู้จักนับเลขเป็นนานประมาณ 5,000 ปีแล้ว แต่ระบบเลขที่ใช้เป็นเลขฐานหกสิบ และนี่ก็คือเหตุผลที่เรายึดติดการแบ่ง 1 ชั่วโมงเป็น 60 นาที และ 1 นาทีเป็น 60 วินาที ส่วนชาว Babylonian เมื่อ 4,000 ปีก่อนนั้น ก็ได้พัฒนาวิชาคณิตศาสตร์ขึ้นไปอีก จนสามารถหาค่าของ √2 ได้ถูกต้องพอสมควร นอกจากนี้นักคณิตศาสตร์ชาวบาบิโลน ก็ยังรู้อีกว่าสมการ a2 + b2 = c2 มีคำตอบเป็นเลขจำนวนเต็มหลายชุดเช่น (3, 4, 5) หรือ (5, 12, 13) ทั้งนี้เพราะ 32+42 = 52 และ 52+122 = 132 เป็นต้น นักคณิตศาสตร์ชาวบาบิโลยก็ยังได้พบอีกว่า ถ้า a = 12,709 และ b =13,500 แล้ว c จะเท่ากับ 18,541 ด้วย ชาวอียิปต์ก็มีความสามารถทางคณิตศาสตร์ไม่น้อยเช่นกัน การขุดพบกระดาษ Moscow papyrus ที่มีอายุ 3,850 ปี ในพีระมิดได้แสดงให้เรา ณ วันนี้เห็นว่า ชาวอียิปต์รู้จักเลขเศษส่วน รู้วิธีแบ่งขนมปังในอัตราส่วนต่างๆ รู้วิธีหาพื้นที่ของสามเหลี่ยม รู้วิธีหาปริมาตรของทรงกระบอก เมื่อมีการกำหนดความยาวเส้นผ่าศูนย์กลาง และส่วนสูงของทรงกระบอกมาให้ นอกจากนี้นักคณิตศาสตร์อียิปต์ยังได้พบอีกว่า ¶ ซึ่งเป็นอัตราส่วนระหว่างความยาวของเส้นรอบวง/เส้นผ่าศูนย์กลางของวงกลมใดๆ มีค่า 256/81 หรือ 3.16 ศูนย์กลางการศึกษาคณิตศาสตร์ได้เคลื่อนจากอียิปต์สู่กรีซในอีก 1,200 ปีต่อมา เมื่อนักคณิตศาสตร์คนหนึ่งชื่อ Thales แห่งเมือง Miletus ได้ถือกำเนิด Thales เป็นปราชญ์ผู้รอบรู้ในศาสตร์ต่างๆ หลายด้านเช่น ได้พบว่าเวลาเอาแท่งอำพันถูด้วยขนสัตว์ จะเกิดปรากฏการณ์ไฟฟ้าสถิต และในการศึกษาวิชาเรขาคณิต Thales ได้ค้นพบว่า มุมที่ฐานของรูปสามเหลี่ยมคล้ายทุกรูปจะเท่ากัน และเวลาเขาลากเส้นผ่านจุดศูนย์กลางของวงกลมใดๆ Thales สามารถพิสูจน์ได้ว่า วงกลมวงนั้นจะถูกแบ่งออกเป็นสองส่วนเท่าๆ กัน Pythagoras เป็นนักคณิตศาสตร์กรีกอีกท่านหนึ่งที่มีชื่อเสียง เขาถือกำเนิดบนเกาะ Samos ในทะเล Aegean เมื่อ 30 ปีก่อนพุทธกาล ในวัยหนุ่ม Pythagoras ได้ศึกษาคณิตศาสตร์ ปรัชญา ฟิสิกส์ และทุกวันนี้เรารู้จักทฤษฎีของ Pythagoras ดี ซึ่งทฤษฎีนี้แถลงว่า พื้นที่ของสี่เหลี่ยมจัตุรัสที่อยู่บนด้านตรงข้ามมุมฉากของสามเหลี่ยม มุมฉากใดๆ จะเท่ากับผลบวกของพื้นที่สี่เหลี่ยมจัตุรัสบนอีกสองด้านที่เหลือเสมอ ในอดีตเมื่อ 2,500 ปีก่อนนี้ Athens คือศูนย์กลางของวิทยาการทุกแขนง เพราะที่นั่นมีปราชญ์เช่น Plato Aristotle Pythagoras และ Democritus ในปี พ.ศ. 56 Plato ได้จัดตั้งวิทยาลัยขึ้นเพื่อสอนคณิตศาสตร์และปรัชญาให้นักศึกษา และที่เหนือประตูทางเข้ามีวิทยาลัยคำจารึกว่า “ไม่ให้คนที่ไม่รู้เรขาคณิตเข้ามาในสถานที่นี้” ทั้งนี้เพราะ Plato มีความเชื่อว่า ใครก็ตามที่จะเป็นผู้บริหารบ้านเมือง ต้องรู้ปรัชญาและคณิตศาสตร์เป็นอย่างดี Aristotle ก็เป็นปราชญ์กรีกอีกท่านหนึ่งที่ได้เข้ามาศึกษาที่ Plato Academy นี้ และได้สอนประจำที่วิทยาลัยเป็นเวลานาน 20 ปี จนกระทั่ง Plato ตาย Aristotle สนใจศึกษาวิชาตรรกวิทยา ซึ่งเกี่ยวข้องกับความเป็นเหตุผลเช่น การสรุปว่าเมื่อคนทุกคนต้องตาย และ Socrates เป็นคน ดังนั้น Socrates ก็ต้องตาย เป็นต้น ในรายปี พ.ศ. 250 องค์ฟาโรห์ Ptolemy 1 เรืองอำนาจในอียิปต์ ศูนย์กลางการศึกษาคณิตศาสตร์ของกรีก จึงได้กลับมาอยู่ที่ Alexandria อีก เพราะ Ptolemy ทรงจัดตั้งมหาวิทยาลัยขึ้นที่นั่น และพระองค์ทรงโปรดให้สร้างห้องสมุดที่ยิ่งใหญ่ เพราะห้องสมุดนี้มีเอกสารและสิ่งพิมพ์ต่างๆ กว่า 500,000 ชิ้น ในครอบครอง นักคณิตศาสตร์คนดังคนแรกของสถาบันนี้คือ Euclid ผู้เขียนตำราเรขาคณิตเล่มแรกของโลกชื่อ Elements ในตำราเล่มนี้ Euclid ได้รวบรวมความรู้เรขาคณิตของรูปทรงตันและระนาบต่างๆ ทฤษฎีจำนวนและทฤษฎีอัตราส่วนที่โลกมีขณะนั้น หนังสือเล่มนี้จึงจัดเป็นตำราคณิตศาสตร์ที่สำคัญมากที่สุดเล่มหนึ่งของโลก ส่วน Archimedes ซึ่งเกิดที่เมือง Syracuse บนเกาะ Sicily เมื่อปี พ.ศ. 256 ก็เป็นนักคณิตศาสตร์ผู้ยิ่งใหญ่ที่สุดคนหนึ่งที่ได้เคยเดินทางมาศึกษาที่ Alexandria นี้ เขาเป็นผู้พบวิธีคำนวณหาพื้นที่ผิวรวมทั้งปริมาตรของทรงกลม และทรงกระบอก นอกจากนี้ เขาก็ยังพิสูจน์ได้ว่า ¶ มีค่าอยู่ระหว่าง 310/71 กับ 31/7 ด้วย และในส่วนของคณิตศาสตร์ประยุกต์นั้น Archimedes ได้พบกฎของคานอยู่ กฎการลอยและจมของวัตถุด้วย ประเทศจีนในสมัยโบราณ ก็มีนักคณิตศาสตร์ที่มีความสามารถสูงเช่นกัน แต่เพราะคนจีนมักบันทึกสิ่งต่างๆ บนกระดาษที่ทำจากเยื่อไม้ไผ่ ดังนั้นหลักฐานต่างๆ จึงได้สูญสลายไปมาก ถึงกระนั้น Zhang Heng ผู้เคยมีชีวิตอยู่เมื่อ 2,400 ปีก่อน ก็ได้พบว่า รากที่สองของ 10 มีค่าประมาณ 3.16 ส่วน Liu Hui นั้น ก็ได้คำนวณพบว่า มีค่าอยู่ระหว่าง 3.1410 กับ 3.1427 เมื่อถึงประมาณปี พ.ศ. 1000 Zu Changzhi ได้ใช้วิธีคำนวณพื้นที่ของรูป 12,288 เหลี่ยม ด้านเท่ากับรูป 24,576 เหลี่ยมด้านเท่าที่บรรจุอยู่ในวงกลม และได้พบว่า มีค่าอยู่ระหว่าง 3.1415926 กับ 3.1415927 เขาจึงได้ประมาณค่า ว่าเท่ากับ 355/113 ซึ่งก็ถูกต้องถึงทศนิยมบนตำแหน่งที่ 6 ในอินเดียเมื่อ 2,250 ปีก่อน ซึ่งเป็นยุคของอโศกมหาราช ก็เป็นช่วงเวลาที่คณิตศาสตร์รุ่งเรืองมาก ในตำราพระเวทมีตัวอย่างคณิตศาสตร์ที่แสดงการหารากที่สองของจำนวนต่างๆ และทฤษฎีจำนวนด้วย นักคณิตศาสตร์อินเดียชื่อ Aryabhata ผู้ถือกำเนิดเมื่อ พ.ศ. 67 และ Brahmagupta ซึ่งเกิดเมื่อก่อนพุทธศักราช 55 ปี ได้พบว่า มีค่าประมาณ 3.1416 และ Brahmagupta ได้แก้สมการกำลังสองเช่น 92x2 + 1 = y2 ในกรณีที่ x และ y เป็นเลขจำนวนเต็ม จนพบว่าเมื่อ x = 120 จะได้ y = 1151 นอกจากนี้ เขาก็ยังได้กล่าวถึงวิธีการใช้เลขติดลบ และเลขศูนย์ในการคำนวณด้วย ในทวีปอเมริกากลาง ซึ่งเป็นดินแดนของอารยธรรมมายา ก็มีการศึกษาคณิตศาสตร์เช่นกัน แต่คณิตศาสตร์ที่ใช้มักเกี่ยวข้องกับเวลาเช่น ใช้ในการทำปฏิทิน 2 รูปแบบ คือ แบบแรกแบ่ง 1 ปี เป็น 260 วัน และ 1 เดือนมี 20 วัน ส่วนอีกแบบหนึ่งนั้น 1 ปี มี 365 วัน และเท่ากับ 181 เดือน โดย 1 เดือนมี 20 วัน และมีวันพิเศษเพิ่มเติม 5 วัน คนรุ่นหลังล่วงรู้ความสามารถในการนับ และการคำนวณของชาวมายา จากการอ่านลวดลายที่แกะสลักบนเสาหิน หรือกำแพงที่ปรักหักพัง ในราวปี พ.ศ. 2000 ชนชาวอินคา ซึ่งอาศัยอยู่ในประเทศเปรูในอเมริกาใต้ รู้จักสร้าง quipu ซึ่งเป็นเชือกที่มีปมมากมายและตำแหน่งของปมบอกจำนวนและตามปกติชาวอินคาใช้ quipu ในการทำบัญชีในโลกอาหรับโบราณ ก็มีการศึกษาคณิตศาสตร์เช่นกัน Muhanumad ibn Musa al Khwarizmi คือนักคณิตศาสตร์ชาวเปอร์เซีย ผู้เคยมีชีวิตอยู่ในช่วงปี 1323-1393 ในกรุงแบกแดด เขาเป็นนักคณิตศาสตร์ผู้ริเริ่มสร้างวิชาพีชคณิต โดยเรียกชื่อวิชาว่า al jabr คำนี้ได้แปลงมาเป็น algebra ในภาษาอังกฤษ ในเวลาต่อมา Al-Birundi ก็เป็นนักคณิตศาสตร์อาหรับอีกท่านหนึ่ง ผู้มีชื่อเสียงในอีก 200 ปีต่อมา จากผลงานสร้างวิชาตรีโกณมิติและ Nasir al-Din al-Tusi ผู้มีชีวิตในระหว่างปี 1744-1817 ก็เป็นนักคณิตศาสตร์อาหรับอีกท่านหนึ่งที่ได้พัฒนาวิชาตรีโกณมิติและตรรกวิทยา โดยได้พบว่า ถ้า a, b และ c คือด้านของสามเหลี่ยมที่อยู่ตรงข้ามกับมุม A, B และ C ตามลำดับ แล้วเราจะได้ว่า a/sin A = b/sin B = c/sin C
|
ความคิดเห็น